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Propagation Modes, Equivalent Circuits, and Characteristic

Terminations for Multiconrductor Transmission

Lines with Inhomogeneous Dielectrics

KENNETH D. MARX

Abstract—The theory of wave propagation on lossless multicon-
ductor transmission lines with inhomogeneous dielectrics is devel-
oped using matrix analysis. The treatment is concise and complete
and has the advantage of identifying propagation modes in a way that
permits straightforward physical interpretation. The equivalent cir-
cuit for the general line is derived and its application to the solution
of wave problems with reflections is demonstrated. Special con-
sideration is given to the problem of characteristically terminating a
multiconductor line, i.e., terminating without reflections. The realiza-
bility of such a characteristic termination network is discussed, and
proofs of realizability are given for the important cases of all lines
with homogeneous dielectrics and all three-conductor lines, regard-
less of dielectric inhomogeneities. Symmetric three-conductor lines
are discussed to exemplify the general theory, and an application to
the problem of mode conversion on symmetric and asymmetric
shielded strip lines is given.

I. INTRODUCTION

IGH-FREQUENCY transmission or instrumentation

systems using coaxial cables have become a standard

feature in nearly every research and development
laboratory. Such concepts as characteristic termina-
tion, line impedance, propagation velocity, and reflection
coefficient in two-conductor systems are familiar to engineers
and technicians alike. However, the extension of these con-
cepts to multiconductor systems and their proper application
in the design of instrumentation and transmission equipment
has not been adequately recognized. For instance, it is im-
portant to realize that mode conversion in shielded-pair
instrumentation cables (see Fig. 1) will distort the signal im-
pressed between the two principal conductors if the termina-
tion impedances between the shield and the conductors are
not properly chosen. Besides the application of multiple-line
theory to such instrumentation cables, other important appli-
cations occur in the cases of microwave directional couplers
and other stripline devices.

The primary purposes of this paper are twofold. First, the
theory of wave propagation on lossless multiconductor trans-
mission lines with inhomogeneous dielectrics is presented in a
way that is completely general and yet concise. While many
individual parts of this problem appear elsewhere [1]-[8],
the matrix formalism used allows the notation to be kept very
compact, with many of the relationships between voltage and
current waves and their reflections taking precisely the same
form as the analogous equations for the familiar two-con-
ductor line. Unique features of this work are the use of the
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Fig. 1.

Shielded-pair instrumentation cable—an
example of a three-conductor transmission line.

pair of adjoint matrices! LC and CL in generalizing the in-
homogeneous dielectric case, and the simple interpretation of
the propagation modes as actual voltage and current com-
ponents.

The second objective of the paper is to derive equivalent
circuits and characteristic terminations for multiconductor
lines. The equivalent circuit permits considerable simplifica-
tion in the analysis of wave-propagation problems on such
lines. The realization of a characteristic termination network
is of interest because it provides the means for eliminating
reflected waves. ‘ ,

Derivation of these circuits and terminations is based on
the derived relation

Viz, 1) = ZI(z, {)

for unidirectional voltage V and current I waves on the line,
formally equivalent to the familiar result for two-conductor
lines. Z, is a matrix called the characteristic impedance ma-

1 Bold type is used to denote both vectors and matrices. The context
should make clear which is intended. Subscripted symbols in bold type
refer to specific vectors or matrices (e.g., the {th voltage eigenvector is
V.). Symbols for vectors or matrices that appear in regular type, sub-
scripted, refer to components of the vector or martrix (e.g., the 1st com-
ponent of the ¢th voltage eigenvector is V).
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trix. The characteristic termination is, not surprisingly, any
network with impedance matrix Z,. The physical realizability
of such a termination in terms of a resistive network is dis-
cussed. Rigorous proofs of realizability are given for the im-
portant cases of all lines with homogeneous dielectrics and all
three-conductor lines in general, regardless of dielectric in-
homogeneities.

Finally, the theory is applied to a treatment of some gen-
eral aspects of symmetric three-conductor lines. Some illustra-
tive examples of mode conversion on shielded striplines are
given.

II. DERIVATION OF THE PROPAGATION MODES

The propagation modes of a general transmission line are
derived as follows. Consider a lossless line formed by #-+1
conductors, one of which is chosen as the reference ground.
The line is assumed to be uniform along its length (the z-
coordinate), but of arbitrary cross-sectional configuration.
In particular, the dielectric material may be inhomogeneous;
this freedom requires special consideration in the analysis.

In the presence of materials of different dielectric con-
stants, the propagation cannot in general be TEM. However,
the low-frequency propagation is “quasi-TEM” [8], [9], and
a valid analysis of the propagation modes can proceed from
the telegrapher’s equations. These equations are [1]-[3],

[9], [10]:

avV(z, i)_ 7 oIz, t) 1)
0z at

al(z, ¢) _ Ca_V(z, t)_ @
a2 at

where V(z, t) and I(z, t) are n-dimensional column vectors
which represent the voltages and currents on the conductors,
and L and C are nXn inductance and capacitance (per unit
length) matrices. Both L and C are real, symmetric, and
dominant, They are, therefore, positive definite [2]. L has all
positive elements, and C has all positive diagonal elements
and all negative off-diagonal elements.

A propagation mode is defined as a solution to (1) and (2)
in which the voltage and current vectors have the following
form:

V(z, 1) = V-f(z — oi)
Iz, 8) =I-f(z — vi).

Substitution in (1) and (2) results in the following rela-
tions between the constant vectors V and I:

V =Ll (3)
I=1CV. (4)

Eliminating I, there results an eigenvalue equation for V:
1
(LO)v = - |4 (5)
v

that is, 1/v% must be an eigenvalue of the matrix LC, and V
the associated eigenvector.
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For inhomogeneous dielectrics there will in general be #
distinct eigenvalues, although degeneracies may occur among
the eigenvalues because of symmetry. For homogeneous di-
electrics, LC = (1/v,2) U, where v,=1/~/ue, and U is the iden-
tity matrix [2]. Any vector V will then satisfy (5); the eigen-
values are n-fold degenerate, with propagation velocity v, for
any signal, In any case, there will always be # linearly inde-
pendent vectors available to form a basis in #-dimensional
space.

Associated with the eigenvectors V; and eigenvalues 1/v,2,
t=1, - -+ n, there are current eigenvectors I; related to the
V. through (4). The I, are easily shown to be eigenvectors of
the adjoint matrix CL with the same eigenvalues 1/9,2.

III. PROPERTIES OF THE MODES
A. Real and Positive Eigenvalues, Real Eigenvectors

In order that the modes represent unattenuated traveling
waves, the velocities must be real, i.e., the eigenvalues 1/v,2
must be real and positive. This is always true for eigenvalues
of LCif L and C are realizable; the proof is briefly outlined as
follows. The matrix LC can be written?

LC = Ll/Z(Cl/ZLl/Z)T(Cl/?Ll/Z)L—1/2.

The matrix B=(CV2LV%)T(CY2LY2) has the form ATA,
where A is real; hence, B is positive definite [11, pp. 39~
40] and has positive eigenvalues. But LC is just a similarity
transformation of B, so its eigenvalues are the same as those
of B {11, p. 48]. Since LC and its eigenvalues are real, the
eigenvectors can be assumed real as well.

By taking the »; to be the positive (negative) square roots
of the inverses of the eigenvalues, # propagation modes are
established, which have the form of waves traveling in the
positive (negative) z direction. Equations (3) and (4) show
that for a given voltage (current) eigenvector, the signs of the
corresponding currents (voltages) are reversed when the direc-
tion of propagation is reversed. This is required from the
symmetry of the physical configuration.

B. Orthogonality Properties

The orthogonality properties of the modes are exhibited
as follows. Consider the ith and jth modes. Equation (5) and
the analogous equation for the current eigenvectors yield

11
I,-LCV, — V,-CLI, = (— — —>1J.V1

2
12 p)?

where the dot denotes inner product. Since CL is the trans-
pose of LC (more generally, the adjoint, since the matrices are
real), the left side of this equation is zero. Hence

L-V,=0 (6)

unless v, =v,.

In case of degeneracies, i.e., v, =v; for some ¢ and j, there is
arbitrariness in the choice of eigenvectors. However, the
linearly independent eigenvectors can.always be orthogon-
alized by a generalization of the Gram—Schmidt procedure.

2 See [2] for the appropriate definition of the square root of a matrix.
The matrices L2 and CV2 are real and symmetric, and LV2 LV2=L,

Ciz Ci2= .
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C. Eigenvector Expansions
Now consider only positive v;, and assume the eigenvectors
to be normalized, i.e.

I Vi = &;.

[That this is possible follows from (6) and the fact that I V;
is always nonzero. Mathematically, this establishes the linear
independence in #n-space of both sets of eigenvectors V;,
L, i=1,2,-- -, n} Let My and M; be the matrices whose
columns are the normalized voltage and current eigenvectors.
Then

MvM[T = MIMVT = U

Hence, an arbitrary vector E can be represented as a sum of
voltage eigenvectors in the form

E=MvA

> AV

where A is the vector

A =MT"TE
ie,

A; =I;-E.

Clearly, any vector can be represented in terms of current
eigenvectors by an analogous development.

IV. THE CHARACTERISTIC ADMITTANCE
AND IMPEDANCE MATRICES

The eigenvector expansions will now be used to derive re-
lations between the voltages and currents in waves traveling
in either direction. Let a wave traveling in the forward (posi-
tive ) direction be characterized at some point in space and
time by the voltage vector V.

If

]

A=M"V;
then

Vi

]

3 AV

So the current in this forward wave is

I =3 Al
= M;A
= (MiM;"V;)
=Y, V; ¢))
where the characteristic admittance matrix ¥,, defined by
Y, = M/M," (8a)

has been introduced. Since My = My™!, it can also be written
Y, = M My, (8b)

This latter form is important because it holds regardless of
whether the eigenvectors are normalized. All that is required
for its validity is that the eigenvectors satisfy (3) and (4).

The characteristic impedance matrix is defined simply as
the inverse of this admittance matrix:
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Z, =Y,
Then
V, = Z,I,. . (9

(The next section addresses the question of whether the matrix
Y, is that of a physically realizable resistive network. If so,
its inverse Z, always exists.)

Similarly, for a wave traveling in the backward direction

Ib = - YoVb (10)
or

Ve = — ZI,. (11)

V. REALIZABILITY OF THE ADMITTANCE
MATRIX AS A RESISTIVE NETWORK

The realizability of the characteristic admittance matrix
Y, will now be considered in order to pave the way for subse-
quent discussions.

In order to be physically realizable in terms of a resistive
network, the matrix ¥, must have the following properties
[12]. It must be real, symmetric, dominant (therefore positive
definite), and have positive diagonal elements and negative
off-diagonal elements. Since My is real, (8a) immediately
establishes that ¥, is always real, symmetric, and has positive
diagonal elements. Furthermore, it is positive definite, since
it has the form AT 4, with 4 real [11, pp. 39-40]. Based on
physical intuition, it is tempting to conjecture that Y, is
always realizable. However, we are able to give rigorous proofs
only for two special cases. Nonetheless, they are important
ones; namely, lines with homogeneous dielectrics and three-
conductor lines.

To establish the proof for lines with homogeneous di-
electrics, first use (4) to write My in the form

M; = CMyS (12)

where S is a diagonal matrix whose elements are the propaga-
tion velocities v;. Then

Y, = CMySMy 1. (8¢)
If the dielectric is homogeneous, S= (1/+/ue) U=v,U, then
Y, =C.

Since the matrix C has precisely the same properties required
for realizability of Y,, it is established that ¥, is always
realizable for a line with a homogeneous dielectric.

The proof for general three-conductor lines is as follows.
Use (3) to write

My = LM;S. (13)
From (8c) and (13)
Y, = CMySS—M;~ 'L}
= CY, 'L}
S0
Y.L = CY;! (14a)
or
Y.LY, = C. (14b)

This is a general result, valid for any line.
For a three-wire line, these matrices can be written
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Ll Lm Cl '_Cm
L= C =
Lm L2 _Cm C2
Y, Y.
Y -
Y, Y.
where Li, Ls, Lm, C1, Ci, and C, are positive and L, <L,
Ly, <Li, Cn<Ci, Cn<Cs It has been established that ¥; and
Y. are positive, so (14b) implies that Y,, is negative, as re-

quired. To show dominance write out the diagonal com-
ponents of the matrix equation (14a):

(15)

1
Yle + YmL2 = - X (Cl Ym + Cm Y])

1
Voli + YVolp = — N (Cn¥2+ C2V0)

where A=Y, V,— V2. Since Y, is known to be positive defi-
nite, A>0.3
Then

—Yn (Lu+ Cu/8)
Y, B (L: + C1/4)
~YVn  (Ln + Ca/8)
v, (L1 + C./8)

Hence, ¥, is dominant. Realizability of ¥, for any three-wire
line is therefore established.

VI. TueE EQuIvALENT CIRCUIT FOR
THE MULTICONDUCTOR LINE

Consider a line of length /, connected to arbitrary (n-41)-
terminal networks at each end, as shown in Fig. 2. At the end
z=1, the voltage and current vectors at any time can be writ-
ten as the sum of forward and backward vector waves:

Vie=Viu+ Vu
Il = Ifl + Ibl- (16)

Because the forward and backward waves satisfy (9) and (11),
respectively, it is possible to eliminate the backward wave
from these equations to obtain

Vi+ Z.I, = 2V, 17

a form familiar from the theory of two-conductor lines. If the
incident wave Vy; is known, then (17) and a knowledge of the
terminating network suffice to determine V; and I;. Similarly,
at the end z=0, the voltage and current obey

Vo - ZoIo = 2Vba

where ¥V, is the backward (incident) wave at g=0.

Equations (17) and (18) are just the equations for the re-
sponse of the circuit shown in Fig. 3. Hence this circuit is an
equivalent circuit for the multiconductor line. Each end of
the line responds as an (n+41)-terminal network with im-
pedance matrix Z, (admittance matrix ¥,), with each terminal
connected in series with a voltage source. The voltage sources
are just twice the components of the appropriate incident
voltage vectors Vy; and V.

(18)

3 The principal minors of a positive definite matrix are positive
(13, p. 258].
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Fig. 2. Schematic of multiconductor line connected to networks at each
end. Pairs of voltage and current vectors are shown with arrows to
indicate the directions of propagation of the vectors referred to in
the text.

GROUND GROUND

Fig. 3. Equivalent circuit for the multiconductor line.

To determine these sources, use (16) and its equivalent at
2=0 to obtain

Vi =3(Vi — Z.I))
Vfo = %(Vo + ZoIa)-

Since, in general, the different modes propagate at different
velocities, a knowledge of V¥, at one time does not suffice to
identify V; one “transit time” later. Instead, Vy, must be de-
composed into eigenvectors at z2=0:

Viot) = My A(t)
where
A(D) = M/TV,,(®)
= M/[V.() + ZL(D)]/2.
Then define the transit time for each mode as
T = /s, i=1,2,---,m

The desired voltage vector Vy;(¢) is thus obtained from Vy,(f)
by adding eigenvectors at the appropriate transit time after
leaving the point 2=0:

Valty =1/2 2, A, — )V,

I

1/2 S AMIV.(t — 1) + ZL1 — )]}V

where the subscript j on the { } indicates the jth component
of the enclosed vector.
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Fig. 4. Equivalent circuits for two- and three-conductor lines. (a) Two-
wire line where Z, is the characteristic impedance. (b) One possible
circuit for a three-wire line. (¢) A second possible circuit for a three-
wire line.

For the cases of homogeneous dielectrics (and two-con-
ductor lines), for which there is a unique transit time 7, this
becomes simply

Vi) = 172[V.(t — 7) + ZL(t — 7)].

Similarly, at 2=0

Vi) = 1/2 2 AM\Vi(t — 7)) — ZL(t — 7)]},V;

and for homogeneous dielectrics,
Viot) = 1/2[Vi(t — 7) — ZL(t — 7)].

Equivalent circuits for two- and three-conductor lines are
shown in Fig. 44 The circuit for the two-conductor line is
well known, and is given only to demonstrate that it falls
within the framework of the general theory.

The equivalent circuit for any multiconductor line has
some arbitrariness in that the impedance network can be rep-
resented in a variety of ways, provided that it has impedance
matrix Z,. Fig. 4(b) and (c) shows two convenient forms for a
three-conductor line. The first is labeled with subscript ¥’s
because the resistance values are more simply related to the
components of the matrix ¥, than to those of Z,. Adopting
the notation of (15), the relationships are

1
Ryy = ——r

Yl+ Ym

* The equivalent circuit shown in Fig. 4(b) was first deduced by
Williams and Hull [13]. It was their work that suggested the general
results given here.
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1
Ryy = ——
T Vet Y
R ! (19)
Ym — Ym

The resistances in the circuit shown in Fig. 4(c) are more
simply related to the components of Z,. If Z, is written as

< )
Zo
Zm Z}

they are
Rzy=2,—2Zn
Rzy =2y — Zn
Ry = Zon. (20)

The equivalent circuit actually used in an application can
be chosen for convenience, depending on the terminating net-
work, type of signals considered, etc.

VII. THE TRANSMISSION AND REFLECTION MATRICES

Using the relationships between waves which were dis-
cussed in the previous section, it is a simple matter to derive
the matrix equivalents of the familiar transmission and reflec-
tion coefficients. The derivation is identical in form to that
usually given for transmission and reflection coefficients of
two-conductor lines [14].

Assume now that the line shown in Fig. 2 is terminated in
a passive circuit with impedance matrix Z.. (Consider the
second network shown in Fig. 2 to be such a circuit.) Consider
a voltage signal Vj; incident on this termination. As in (16)
et seq., let the voltage and current vectors at the terminals be
V: and I,. They must be related by

Il == ZL*IVZ.
Then from (17)
(U + ZOZL_I) Vz = ZVﬂ.

Hence the transmitted voltage is given in terms of the incident
voltage by

Vi=r,Vy
where
% = 2Z(Zr + Zo)! (21)
is the voltage transmission matrix.
From (16), the reflected voltage vector is
Vei =V, — Vg
= (2, — U)Vy
= 0.V
where
o, =%, — U
=(Zr — Z,)(Z1 + Z,)! (22)

is the voltage reflection matrix. Note that (21) and (22) are
identical in form to those for the usual transmission and reflec-
tion coefficients for two-conductor lines [14].
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It is of particular importance to note that the choice
Z; =12, yields

v, =U
e, = 0.

That is, if the line is terminated in a network which has an
impedance matrix equal to the characteristic impedance ma-
trix, then no reflections occur and the output signal is equal
to the incident signal. This, of course, is anticipated intui-
tively on the basis of familiarity with the result for two-con-
ductor lines. It is also immediately apparent upon considera-
tion of the equivalent circuit of Fig. 3. Connecting a network
with impedance matrix Z, to the line is the same as connecting
another infinitely long line with identical characteristics, in
which case no reflections would occur.

A discussion of the physical realizability of such a termina-
tion has already been given in Section V.

VIII. SyMMETRIC THREE-CONDUCTOR LINES

The concepts which have been developed for general multi-
conductor lines will now be applied to the specific case of sym-
metric three-conductor lines.

For any three-conductor line with inductance and capaci-
tance matrices given by (15), the equation I LC—(1/4?) U] =0
results in the following formula for two propagation velocities:
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It is always true that
2, < 2,

equality holds only for decoupled lines, for which L,,= C,=0.
For many applications, it is simpler to leave the eigenvec-
tors unnormalized. Then, the eigenvector matrices

1 1

11 Z %
MV=<1 _1> M; = 1 —1
. 5

can be used.

The characteristic admittance matrix ¥, can be deter-
mined from (8b); Z, is obtained by inversion. The results are
as follows:

1 1 1 1

-

1 |z, %o Ze %o
Y, = -

2 1 1 1

— 4=

Ze %0 Ze 2,

(24)

(23a)

9 = [Llcl + L2C2 - 2mem __'_ ‘\/(LICI - L2C2)2 + 4(mel ha LQCm)(LmCE - LlCm)]—lm‘

If conductors 1 and 2 are symmetric with respect to
ground, Li=L; and C1=C(,, i.e., the inductance and capaci-
tance matrices have the forms

Ll Lm C1 —Cm
L = C = >.
Lm L1 ’_Cm Cl
Then the two velocities defined by (23a) are

The voltage and current eigenvectors are

1 Ci—Cnf 1 1
ne () ey ()b
1 Li+ L.\ 1 %,

1 G+Cn/ 1 1
V0=( 1) I - _ILL( ):#Vo_

Li— L, \—1
This is a well-known result [2], [15]; the two propagation
modes are an even (or common) mode and an odd (or signal)
mode. The voltage and current vectors are related by simple
scalars, called the even-mode impedance

Ve

To

(23b)

Li+ Ln
2, = = = =
Ci—Cn
and the odd-mode impedance,
Li— Ln
2, = _
Cl + Cm

Consider termirating a three-conductor line with a net-
work of the same form as that which is shown in the equiva-
lent circuit in Fig. 4(b). From (19) and (24) it is found that
the values of resistance required for the characteristic term-
ination are

Ry, = Rys = 2.

2%6%6

%3¢ — %o

Note that Ry; and Ry; are equal to the characteristic even-
mode impedance. Analysis of (22) shows that resistances equal
to g, between each conductor and ground will terminate even-
mode signals without reflection, independent of the value of
mutual resistance. This is, of course, due to the fact that, for
an even-mode signal, the two conductors are at the same
potential.

Similarly, the combination of resistances that permits
termination of odd-mode signals without reflections iz some-
what arbitrary. All that is required is that the network be
balanced (since Ry:= Ry:), and that the impedance seen be-
tween terminals 1 and 2 with the ground open be equal to
2z¢. This is the impedance between conductors 1 and 2 when
the line is operated in signal mode. (Sometimes called the
signal-mode impedance.)

However, only the choices indicated by (25) will termin-
ate both modes. This fact is of importance in terminating
shielded-pair cables, such as RG/22, to eliminate noise in the
signal mode atising from the conversion of spurious common-
mode signals to signal-mode signals upon reflection.

From (20) and (24), the values of Rzi, Rz, and Rz, re-
quired in the circuit of Fig. 4(c) are:
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CONDUCTOR 1
CONDUCTOR 2 :\\

EXTERIOR DIELECTRIC
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L 1
€ E t‘lj

W
w

A
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Fig. 5. Cross section of shielded stripline. (Note that the
scale belies the assumption w>>d =d;+d;-+d,.)

TABLE 1

PARAMETERS CALCULATED FOR THE SYMMETRIC
LiNE AND Two ASYMMETRIC LINES

4 = 015" dy = .o =0
propagation vy ~683c .673¢ .589¢ {c = vel.
velocities gva .S61e S62¢ .Shoe g: iiaghmtm)
Voltege 11 1 L\ |/ -193.856

i ector
natrix, " (1 -1) (1.020 -1/ |\3 - ] velts
Characteristic 11,98  8.60\|/9.91 7.11 3.56  2.54

impedance Z° chms
matriz, 8,60 11.98/1\7.11 10.92 2,54 T.62

Note: The first (second) mode is the one corresponding to the negative
(positive) sign of the square root in (23a) for the propagation velocities.
Note that unnormalized eigenvectors are used.

CONDUCTOR 2
o—q
CONDUCTOR 1
1voLr
SHIELD ( GROUND )
e £ =1 METER — ]
o)
3.380 3.360 . 2
4,%4ns
o—q
R 3.380 | 3,380 .
1voLr 4.94ns
8.610% $8.610
®

Fig. 6. Circuit illustrating common-mode to signal-mode conversion.
(a) Circuit. (b) Equivalent circuit for the case d;=0.015 m.

Rz = Rzs = 3,

Rz = (3, — 2,)/2. (26)

IX. EXAMPLE: SHIELDED STRIPLINE

Consider the shielded stripline shown in Fig. 5. Under the
assumption W>>d (so fringe fields can be ignored), the induct-
ance and capacitance matrices are easy to evaluate analyti-
cally via the usual magnetostatic and electrostatic analysis.
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3.810 3,010 .+ _
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Fig. 7. Equivalent circuits for the agsymmetric lines. (a) Circuit

for the case d,=0.01 in. (b) Circuit for the case d,=0.

157 d =.015
i
————— d. =.01
i

-
(=]
1
-

QUTPUT SIGNAL ON CONDUCTOR 2, VOLTS

e ——————— r——
5 1
i
i
1
i
1
o+— T T T T 1
0 4.5 5.0 5.8 6.0 6.5
t, ns
Fig. 8. Output signals versus time for the symmetric and asym-

metric lines inserted in the circuit of Fig. 6 (a).

As numerical examples let e,=3.43 €, €=1.90 ¢,, W=0.25
in, di=0.011in, dy=d;=0.005 in, d;=0.015 in, and consider the
three cases d;=0.015 in (symmetric line), 0.010 in, and 0.0 in.
All the pertinent parameters have been computed for these
cases and some of them are summarized in Table I.

As an example of mode conversion at an improper term-
ination, consider the circuit shown in Fig. 6(a); it is termin-
ated in a short circuit from conductor 1 to ground. Appropri-
ate equivalent circuits are shown in Figs. 6(b), and 7(a) and
(b). (As shown, they are valid only for two transit times, i.e.,
until reflected waves reach the end z=0.) The unit step input
produces a 1-V signal propagating to the right on both con-
ductors. For the symmetric line, this is a pure common-mode
signal. However, in the asymmetric lines, both modes are
excited so that parts of the signals arrive at the termination at
different times. The resulting differential signals between
conductors 2 and 1 at the termination are shown in Fig. 8.
Note that the difference in transit time results in an over-
shoot of the signals with respect to their long-time values.

X. CoNcLUDING REMARKS

A matrix analysis of lossless multiconductor transmission
lines with inhomogeneous dielectrics has been given. The
equivalent circuit for such a line has been derived from the
analysis. The general theory provides a convenient method for
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investigating the characteristics of the propagation modes
and the impedance properties of the lines. Straightforward
techniques for solving problems have been given and some
examples have been worked out for the important case of the
three-conductor line,

It should be possible to extend the analysis given here to
the case of low-loss lines, where exponential attenuation of
the propagating modes will arise, along with continuous con-
version of energy from one mode to another. This will be the
subject of further investigation.
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Excess Losses in H-Plane Loaded W aveguides

FRED E. GARDIOL axp OLIVIER PARRIAUX

Abstract—The attenuation in a waveguide partially filled with
absorbing material can become larger than that of the same wave-
guide completely filled with that same material. Theoretical and ex-
perimental results are presented together with field distributions
showing that this excess loss is due to a large concentration of electric
field within the lossy dielectric in the partially filled configuration.

I. INTRODUCTION
I[N A RECENT publication, Bui and Gagné [1] deter-

mined the attenuation in waveguides containing H-plane
slabs of a lossy dielectric, utilizing a perturbation of the
lossless dielectric solution. A most interesting feature of the
results presented is that, in several configurations involving
high-permittivity dielectrics, larger losses were found in
partially loaded waveguides than in completely filled ones.
Rather surprised by this unexpected result, the authors sug-
gest that it might be attributed to the approximate nature of
the technique used. If true, this would mean that the method
and the results presented in [1] are not reliable.
The present study shows that, surprising as they may
seem at first, the results obtained in [1] correspond to actual
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fact and that the attenuation is not necessarily a monotonic
function of the filling factor. The “excess” attenuation is
caused by the presence of a large concentration of the electric
field within the dielectric for the partially loaded waveguide.
A similar nonmonotonic behavior appears in results previ-
ously published by Arnold and Rosenbaum [2].

II. THEORETICAL RESULTS

Since a number of publications have already dealt in some
detail with this type of structure [3]-[5], there is no need to
repeat the basic theory here. The complex transcendental
equation obtained for lossy-dielectric loading can be solved
exactly by means of available computer programs [6]. Cal-
culations were made for the longitudinal section magnetic
LSMy; mode in a waveguide containing a lossy slab next to the
broad wall (Fig. 1). Results for the attenuation and phase
shift are presented in Figs. 2 and 3 as a function of slab thick-
ness for different conductivities. For conductivities ¢ much
smaller than we, the attenuation curves increase exponentially
at first then pass through a maximum in the vicinity of
t/a=0.24 (for this particular configuration), and finally taper
down to the value for the completely filled guide.

For large conductivities [Fig. 2(b)], the attenuation curves
behave differently. The attenuation increases sharply for thin
slabs (as in the previous case), but the peak of the curve is



