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Abstract—The theory of wave propagation on Iossless multicon-
ductor transmission lines with inhomogeneous dielectrics is devel-
oped using matrix analysis. The treatment is concise and complete
and has the advantage of identifying propagation modes in a way that
permits straightforward physical interpretation. The equivalent cir-
cuit for the general line is derived and its application to the solution
of wave problems with reflections is demonstrated. Special con-
sideration is given to the problem of characteristically terminating a
multiconductor line, i.e., terminating without reflections. The realiza-
bility of such a characteristic termination network is discussed, and
proofs of realizability are given for the important cases of all lines
with homogeneous dielectrics and all three-conductor lines, regard-
less of dielectric inhomogeneities. Symmetric three-conductor lines
are discussed to exemplify the general theory, and an application to
the problem of mode conversion on symmetric and asymmetric
shielded strip lines is given.

1. INTRODUCTION

H

IGH-FREQUENCY transmission or instrumentation

systems using coaxial cables have become a standard

feature in nearly every research and development

laboratory. Such concepts as characteristic termina-

tion, line impedance, propagation velocity, and reflection

coefficient in two-conductor systems are familiar to engineers

and technicians alike. However, the extension of these con-

cepts to multiconductor systems and their proper application

in the design of instrumentation and transmission equipment

has not been adequately recognized. For instance, it is im-

portant to realize that mode conversion in shielded-pair

instrumentation cables (see Fig. 1) will distort the signal im-

pressed between the two principal conductors if the termina-

tion impedances between the shield and the conductors are

not properly chosen. Besides the application of multiple-line

theory to such instrumentation cables, other important appli-

cations occur in the cases of microwave directional couplers

and other stripline devices.

The primary purposes of this paper are twofold. First, the

theory of wave propagation on lossless multiconductor trans-

mission lines with inhomogeneous dielectrics is presented in a

way that is completely general and yet concise. While many
individual parts of this problem appear elsewhere [1 ]– [8 ],

the matrix formalism used allows the notation to be kept very

compact, with many of the relationships between voltage and

current waves and their reflections taking precisely the same

form as the analogous equations for the familiar two-con-

ductor line. Unique features of this work are the use of the
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Fig. 1. Shielded-pair instrumentation cable—an
example of a three-conductor transmission line.

pair of ad joint matricesl LC and CL in generalizing the in-

homogeneous dielectric case, and the simple interpretation of

the propagation modes as actual voltage and current com-

ponents.

The second objective of the paper is to derive equivalent

circuits and characteristic terminations for multiconductor

lines. The equivalent circuit permits considerable simplifica-

tion in the analysis of wave-propagation problems on such

lines. The realization of a characteristic termination network

is of interest because it provides the means for eliminating

reflected waves. /

Derivation of these circuits and terminations is based on

the derived relation

V(z, q = 2.1(2, t)

for unidirectional voltage V and current Z waves on the line,

formally equivalent to the familiar result for two-conductor

lines, Zo is a matrix called the characteristic impedance ma-

I Bold type is used to denote both vectors and matrices. The context
should make clear which is intended. Subscripted symbols in bold type
refer to specific vectors or matrices (e. g., the ith voltage eigenvector is
~J. Symbols for vectors or matrices that appear in regular type, sub-
scripted, refer to components of the vector or matrix (e. g., the 1st com-
ponent of the ith voltage eigenvector is VIJ.
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trix. The characteristic termination is, not surprisingly, any

network with impedance matrix ZO. The physical realizability

of such a termination in terms of a resistive network is dis-

cussed. Rigorous proofs of realizability are given for the im-

portant cases of all lines with homogeneous dielectrics and all

three-conductor lines in general, regardless of dielectric in-

homogeneities.

Finally, the theory is applied to a treatment of some gen-

eral aspects of symmetric three-conductor lines. Some illustra-

tive examples of mode conversion on shielded striplines are

given.

II. DERIVATION OF THE PROPAGATION MODES

The propagation modes of a general transmission line are

derived as follows. Consider a Iossless line formed by n+ 1

conductors, one of which is chosen as the reference ground.

The line is assumed to be uniform along its length (the Z-

coordinate), but of arbitrary cross-sectional configuration.

In particular, the dielectric material may be inhomogeneous;

this freedom requires special consideration in the analysis.

In the presence of materials of different dielectric con-

stants, the propagation cannot in general be TEM However,

the low-frequency propagation is “quasi-TEM” [8], [9], and

a valid analysis of the propagation modes can proceed from

the telegrapher’s equations, These equations are [1]- [3],

[9], [10]:

a v(z, t) az(z, t)
–L—

az–= at
(1)

az(z, t) a V(Z, t). – c ——-
az at

(2)

where V(z, t) and I(z, t) are n-dimensional column vectors

which represent the voltages and currents on the conductors,

and L and C are n Xn inductance and capacitance (per unit

length) matrices. Both L and C are real, symmetric, and

dominant. They are, therefore, positive definite [2]. L has all

positive elements, and C has all positive diagonal elements

and all negative off-diagonal elements.

A propagation mode is defined as a solution to (1) and (2)

in which the voltage and current vectors have the following

form:

V(2, t) = V.j(z – Vt)

1(2,t) = Z.f(z – Vt),

Substitution in (1) and (2) results in the following rela-

tions between the constant vectors V and [:

V = vLI (3)

Z=vcv. (4)

Eliminating Z, there results an eigenvalue equation for V:

(Lc)v=+v (5)

that is, l/vz must be an eigenvalue of the matrix L C, and V

the associated eigenvector.

For inhomogeneous dielectrics there will in general be n

distinct eigenvalues, although degeneracies may occur among

the eigenvalues because of symmetry. For homogeneous di-

electrics, L C = (1/v02) U, where UO= l/<~, and U is the iden-

tity matrix [2]. Any vector V will then satisfy (5); the eigen-

values are n-fold degenerate, with propagation velocity UOfor

any signal. In any case, there will always be n linearly inde-

pendent vectors available to form a basis in n-dimensional

space.

Associated with the eigenvectors Vi and eigenvalues l/u,2,
;= l,..., n, there are current eigenvectors Ii related to the

V, through (4). The Z, are easily shown to be eigenvectors of

the ad joint matrix CL with the same eigenvalues l/u,z.

III, PROPERTIES OF THE MODES

A. Real and Positive Eigenvalues, Real Eigenvectors

In order that the modes represent unattenuated traveling

waves, the velocities must be real, i.e., the eigenvalues l/v,2

must be real and positive. This is always true for eigenvalues

of L C if L and C are realizable; the proof is briefly outlined as

follows. The matrix LC can be written2

LC = L1/2(C1/2L1/2)T(C1/2L1/2)L–1/2.

The matrix B = (C1/2L1/2)~(C112L112) has the form AT A,

where A is real; hence, B is positive definite [11, pp. 39–

40] and has positive eigenvalues, But L C is just a similarity

transformation of B, so its eigenvalues are the same as those

of B [11, p. 48]. Since LC and its eigenvalues are real, the

eigenvectors can be assumed real as well.

By taking the Vi to be the positive (negative) square roots

of the inverses of the eigenvalues, n propagation modes are

established, which have the form of waves traveling in the

positive (negative) z direction. Equations (3) and (4) show

that for a given voltage (current) eigenvector, the signs of the

corresponding currents (voltages) are reversed when the direc-

tion of propagation is reversed. This is required from the

symmetry of the physical configuration.

B. Orthogonality Pro~erties

The orthogonality properties of the modes are exhibited

as follows. Consider the ith and jth modes. Equation (5) and

the analogous equation for the current eigenvectors yield

()Z,. LCV, – V,. CLZ, = + Z,. V,
% ~1, ~

where the dot denotes inner product. Since CL is the trans-

pose of L C (more generally, the adjoint, since the matrices are

real), the left side of this equation is zero. Hence

Zj,vi=o (6)

unless v%= VI.

In case of degeneracies, i.e., u,= vi for some i and j, there is

arbitrariness in the choice of eigenvectors. However, the n

linearly independent eigenvectors can always be orthogon-

alized by a generalization of the Gram–Schmidt procedure.

9 See [2 ] for the appropriate definition of the square root of a matrix.
The matrices L112 and C112 are real and symmetric, and LIIZ W = L,
Cl/z @2= c,
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C. Eigenvector Expansions

Now consider only positive vi, and assume the eigenvectors

to be normalized, i.e.

Z4, Vj = 6~j.

[That this is possible follows from (6) and the fact that Z~. Vi

is always nonzero. Mathematically, this establishes the linear

independence in n-space of both sets of eigenvectors Vi,

zi, i=l,2, ..., w.] Let II?& and illr be the matrices whose

columns are the normalized voltage and current eigenvectors.

Then

MvMrT = MIMVT = U.

Hence, an arbitrary vector E can be represented as a sum of

voltage eigenvectors in the form

E = MVA

where A is the vector

A = MITE

i.e.

Ai = Ii. E.

Clearly, any vector can be represented in terms of current

eigenvectors by an analogous development.

IV. THE CHARACTERISTIC ADMITTANCE

AND IMPEDANCE MATRICES

The eigenvector expansions will now be used to derive re-

lations between the voltages and currents in waves traveling

in either direction. Let a wave traveling in the forward (posi-

tive z) direction be characterized at some point in space and

time by the voltage vector V,,

If

A = MIT Vf

then

Vf = ~ A; Vi.
t

So the current in this forward wave is

1, = ~ AiZi
i

= MIA

= (MIMIT V,)

= Y. v. (7)

where the characteristic admittance matrix YO, defined by

Y. = MrMrT (8a)

has been introduced. Since lZr = iWv-l, it can also be written

Yo = MrMv-l. (8b)

This latter form is important because it holds regardless of

whether the eigenvectors are normalized. All that is required

for its validity is that the eigenvectors satisfy (3) and (4).

The characteristic impedance matrix is defined simply as

the inverse of this admittance matrix:

20= Y.–l.

Then

v. = Zozf. (9)

(The next section addresses the question of whether the matrix

YO is that of a physically realizable resistive network. If so,

its inverse 20 always exists.)

Similarly, for a wave traveling in the backward direction

lb = – Yovb (lo)

or

Vb = – ZoIb. (11)

V. REALIZABILITY OF THE ADMITTANCE

MATRIX AS A RESISTIVE NETWORK

The realizability of the characteristic admittance matrix

YO will now be considered in order to pave the way for subse-

quent discussions.

In order to be physically realizable in terms of a resistive

network, the matrix YO must have the following properties

[12]. It must be real, symmetric, dominant (therefore positive

definite), and have positive diagonal elements and negative

off-diagonal elements. Since MI is real, (8a) immediately

establishes that Yo is always real, symmetric, and has positive

diagonal elements. Furthermore, it is positive definite, since

it has the form ATA, with A real [11, pp. 39–40]. Based on

physical intuition, it is tempting to conjecture that YO is

always realizable. However, we are able to give rigorous proofs

only for two special cases. Nonetheless, they are important

ones; namely, lines with homogeneous dielectrics and three-

conductor lines.

To establish the proof for lines with homogeneous di-

electrics, first use (4) to write MI in the form

where S is a diagonal matrix whose elements are the propaga-

tion velocities vi. Then

YO= CMVSMV–l. (8c)

If the dielectric is homogeneous, S= (1/<~) U= IJOU, then

Y. = Voc.

Since the matrix C has precisely the same properties required

for realizability of Yo, it is established that Y. is always

realizable for a line with a homogeneous dielectric.

The proof for general three-conductor lines is as follows.

Use (3) to write

Mv = LMIS. (13)

From (8c) and (13)

Yo = CMvSS-lM1-lL-l

= (-YO-lL-I

so

Y.L = CYO-’ (14a)

or

YoLYo = C. (14b)

This is a general result, valid for any line.

For a three-wire line, these matrices can be written
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‘=(H) ‘=(-2-:)
YI Y.

Y= ()Y. Y,
(15)

where Ll, L2, L~, Cl, G, and Cm are positive and Lm<Ll,

L~<L2, Cm< G, Cm< C,. It has been established that Y, and

Yz are positive, so (14b) implies that Y~ is negative, as re-

quired. To show dominance write out the diagonal com-

ponents of the matrix equation (14a):

Y,Lm + YmL, = – + (cl Y. + cm y])

YJI + Y2Lm = – : (C. Y2 + C, Y.)

where A = Yl Yz – Y~2. Since Yo is known to be positive defi-

nite, A>0.8

Then

– Y. (L. + C./A) < ~
—.

YI = (L, + Cl/A)

– Y. (L + C))JA) < ~.— .—
Y, (L, + C,/A)

Hence, Yo is dominant. Realizability of YO for any three-wire

line is therefore established.

VI. THE EQUIVALENT CIRCUIT FOR

THE MULTICONDUCTOR LINE

Consider a line of length 1, connected to arbitrary (n+ l)-

terminal networks at each end, as shown in Fig. 2. At the end

z =1, the voltage and current vectors at any time can be writ-

ten as the sum of forward and backward vector waves:

Vt = V..2+ Vbt

ZZ= Zfi + Zbt. (16)

Because the forward and backward waves satisfy (9) and (11),

respectively, it is possible to eliminate the backward wave

from these equations to obtain

V1 + Zozt = 2vft (17)

a form familiar from the theory of two-conductor lines. If the

incident wave F’fl is known, then (17) and a knowledge of the

terminating network suffice to determine J-’zand 11. Similarly,

at the end z = O, the voltage and current obey

v. – 2.10 = 2Vbo (18)

where vbo is the backward (incident) wave at z = O.

Equations (17) and (18) are just the equations for the re-

sponse of the circuit shown in Fig. 3. Hence this circuit is an

equivalent circuit for the multiconductor line. Each end of

the line responds as an (n+ 1)-terminal network with im-

pedance matrix Zo (admittance matrix Yo), with each terminal

connected in series with a voltage source. The voltage sources

are just twice the components of the appropriate incident

VOItage vectors ~ft and v’b~.

$ The principal minors of a positive definite matrix are positive
[13, p. 258].

-Vbo’ ‘ bo “f~,lf~ -

Vo,lo Vfe,If. — -“b~tlb~ vi, 11

.n n-

< < < < < <

FIRST -2 MU LTICON9UCTOR 2. SECOND
ARBITRARY ARBITRARY
NETWORK LINE NETWORK

.1 1.

GROUND GROUND

Z=o z =1

Fig. 2. Schematic of multiconductor line connected to networks at each
end. Pairs of voltage and current vectors are shown with arrows to
indicate the directions of propagation of the vectors referred to in
the text.

GROUND GROUND
—

Fig. 3. Equivalent circuit for the multiconductor line.

To determine these sources, use (16) and its equivalent at

z = O to obtain

vb~ = ?j(Vi – 2.11)

Vfo= ; (v. + 2A?).

Since, in general, the different modes propagate at different

velocities, a knowledge of Vjo at one time does not suffice to

identify VL one “transit time” later. Instead, Vfo must be de-

composed into eigenvectors at z = O:

v,.(t) = MvA(t)

where

A(t) = MPVfJt)

—— MJT [ V.(t) + ZOZO(i)]/2.

Then define the transit time for each mode as

$-i = l/vi, i=l,2, . . ..?z.

The desired voltage vector Vf 1(t) is thus obtained from Vfo(t)

by adding eigenvectors at the appropriate transit time after

leaving the point z = O:

where the subscript on the { ] indicates the jth component

of the enclosed vector.
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%.O zoP-
kil

GROUND GROUND

=
(Cl

Fig. 4. Equivalent circllits fortwo- andthree-conductor lines. (a) Two-
wire line where Z. is the characteristic impedance. (b) One possible
circuit for a three-wire line. (c) A second possible circuit for a three-
wire line.

For the cases of homogeneous dielectrics (and two-con-

ductor lines), for which there is a unique transit time~, this

becomes simply

Vfl(t) = l/2[vo(t –T)+z.zo(t– T)].

Similarly, atz=O

v~.(t) = 1/2~ {M~[vt(t–Ti)–zozt(~–T,)I}jvi
1

and for homogeneous dielectrics,

~bo(t) = 1/2[V,(f– T) –ZoZ,(t– T)].

Equivalent circuits for two- and three-conductor lines are

shown in Fig. 4.1 The circuit for the two-conductor line is

well known, and is given only to demonstrate that it falls

within the framework of the general theory.

The equivalent circuit for any multiconductor line has

some arbitrariness in that the impedance network can be rep-

resented in a variety of ways, provided that it has impedance

matrix 20. Fig. 4(b) and (c) shows two convenient forms for a

three-conductor line. The first is labeled with subscript Y’s

because the resistance values are more simply related to the

components of the matrix YO than to those of Zo, Adopting

the notation of (15), the relationships are

1
RY1 = ———

YI + Y.

4 The equivalent circuit shown in Fig. 4(b) was first deduced by
Williams and Hull [13 ]. It was their work that suggested the general
results given here.

(19)

The resistances in the circuit shown in Fig. 4(c) are more

simply related to the components of 20. If Zo is written as

()21 .%
20=

z. Z2

they are

The equivalent circuit actually used in an application can

be chosen for convenience, depending on the terminating net-

work, type of signals considered, etc.

VII. THE TRANSMISSION AND REFLECTION MATRICES

Using the relationships between waves which were dis-

cussed in the previous section, it is a simple matter to derive

the matrix equivalents of the familiar transmission and reflec-

tion coefficients. The derivation is identical in form to that

usually given for transmission and reflection coefficients of

two-conductor lines [14].

Assume now that the line shown in Fig. 2 is terminated in

a passive circuit with impedance matrix Z~. (Consider the

second network shown in Fig. 2 to be such a circuit. ) Consider

a voltage signal Vjt incident on this termination. As in (16)

et seq., let the voltage and current vectors at the terminals be

V1 and 12. They must be related by

ZL= zL–l~t.

Then from (17)

(u+ 2.2.-’) v, = 2vf,.

Hence the transmitted voltage is given in terms of the incident

VOItage by

where

%0 = 2ZL(ZL +

is the voltage transmission matrix.

From (16), the reflected voltage

2.)-’

vector is

(21)

Vbl = V1 – Vfl

= (% – u) v,,

= p.vfl

where

p,=%v — u
= (ZL – 2.)(2. + 2.)-1 (22)

is the voltage reflection matrix. Note that (21) and (22) are

identical in form to those for the usual transmission and reflec-

tion coefficients for two-conductor lines [14].
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It is of particular importance to note that the choice

ZL = Zo yields

T“=u

p, = o.

That is, if the line is terminated in a network which has an

impedance matrix equal to the characteristic impedance ma-

trix, then no reflections occur and the output signal is equal

to the incident signal. This, of course, is anticipated intui-

tively on the basis of familiarity with the result for two-con-

ductor lines. It is also immediately apparent upon considera-

tion of the equivalent circuit of Fig. 3. Connecting a network

with impedance matrix Z. to the line is the same as connecting

another infinitely long line with identical characteristics, in

which case no reflections would occur.

A discussion of the physical realizability of such a termina-

tion has already been given in Section V.

VIII. SYMMETRIC THREE-CONDUCTOR LINES

The concepts which have been developed for general multi-

conductor lines will now be applied to the specific case of sym-

metric three-conductor lines.

For any three-conductor line with inductance and capaci-

tance matrices given by (15), the equation I L C – (l/v’) U\ = O

results in the following formula for two propagation velocities:

It is always true that

z“ < .2,

equality holds only for decoupled lines, for which Lm = Cm= O.

For many applications, it is simpler to leave the eigenvec-

tors unnormalized. Then, the eigenvector matrices

11
1% =

()
Mr = ; ‘0

1 –1 –1

!
——.
z, Z.

can be used.

The characteristic admittance matrix YO can

mined from (8 b); Z. is obtained by inversion. The

as follows:

1 z. ‘ Z. Ze Z.
Y.=-

2 111
— — — –+~

, Ze Zo 26 Z. ,

1 Z6+Z0 Ze—zo
zo=-

( )2 2.–20 Ze+z. “

be deter-

esults are

(24)

[ 1
~ = LICI + L2C2 – 2LmCm + -ti(LICI —–L2C2)’ + 4( LntCI – LTCm)(LmCZ – LICJ –1/2 . (23a)— —— —

L 2
-1

If conductors 1 and 2 are symmetric with respect to

ground, LI= L2 and Cl= CZ, i.e., the inductance and capaci-

tance matrices have the forms

Then the two velocities defined by (23a) are

v, = l/v’(Ll + L.)(C1 — c.)

V. = l/v’(L1 — Lw)(CI + Cm).

The voltage and current eigenvectors are

(23b)

This is a well-known result [2], [15]; the two propagation

modes are an even (or common) mode and an odd (or signal)

mode. The voltage and current vectors are related by simple

scalars, called the even-mode impedance

and the odd-mode impedance,

/LI – L.

v
z. = =—–- .

c1 -+cm

Consider terminating a three-conductor line with a net-

work of the same form as that which is shown in the equiva-

lent circuit in Fig. 4(b). From (19) and (24) it is found that

the values of resistance required for the characteristic term-

ination are

Ryl = Ryt = Ze

2q4’o
Rym = —— .

z, — z“
(25)

Note that RY1 and RY2 are equal to the characteristic even-

mode impedance. Analysis of (22) shows that resistances equal

to z, between each conductor and ground will terminate even-

mode signals without reflection, independent of the value of

mutual resistance. This is, of course, due to the fact that, for

an even-mode signal, the two conductors are at the same

potential.

Similarly, the combination of resistances that permits

termination of odd-mode signals without reflections is some-

what arbitrary. All that is required is that the network be

balanced (since RYI = RYJ, and that the impedance seen be-

tween terminals 1 and 2 with the ground open be equal to

220. This is the impedance between conductors 1 and 2 when

the line is operated in signal mode. (Sometimes called the

signal-mode impedance.)

However, only the choices indicated by (25) will termin-

ate both modes. This fact is of importance in terminating

shielded-pair cables, such as RG/22, to eliminate noise in the

signal mode arising from the conversion of spurious common-

mode signals to signal-mode signals upon reflection.

From (20) and (24), the values of RZI, Rz2, and Kzm re-

quired in the circuit of Fig. 4(c) are:
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CONDUCTOR 1=

\CONDUCTOR 2 ~

/-
EXTERICU DIELECTRIC

A- INTERIOR DIELECTRIC

SHIELD

-------- ----

P = IJe EVERYWHERE

Fig. 5. Cross section of shielded stripline. (Note that the
scale belies the assumption w>>d = dZ+ dI + d..)

TABLE I

PARAMETERS CALCULATED FOR THE SYMMETRIC
LINE AND TWO ASYMMETRIC LINES

——— —
aJ = .01511 a = .OY

3
rJ .IJ
J

propagation vl .683c

I

.6T3c .589c (C =vel.
velocities .561c .562c .5110C of light

‘2 in vacuum)

Volt age I )1(:=’”’ % ~ -:) ~.o,o“8: : -793:’‘volt,,)1

Note: The first (second) mode is the one corresponding to the negative
(positive) sign of the square root in (23a) for the propagation velocities.
Note that unnormalized eigenvectors are used.

CONDUCTOR 2

‘v”L’w*
I SHIELD ( GRCSJND ) I

1-
I =1 METER

--i
(d

3.3ot’l

lb)

Fig. 6. Circuit illustrating common-mode to signal-mode conversion.
(a) Circuit. (b) Equivalent circuit for the case d;= 0.015 m.

Rzl = RZ2 = .s0

Rzm = (Z,,– 2.)/2. (26)

IX, EXAMPLE: SHIELDED STRIPLINE

Consider the shielded stripline shown in Fig. 5. Under the

assumption W >>d (so fringe fields can be ignored), the induct-

ance and capacitance matrices are easy to evaluate analyti-

cally via the usual magnetostatic and electrostatic analysis.

3.81tl .3.81rt

5.om 5.08ft

m

Fig. 7. Equivalent circuits for the asymmetric lines. (a) Circuit
for the case d,= 0.01 in. (b) Circuit for the case d,= O.

:
: 1.5 l— d. = .015~.

I
J

g
‘---- dj = .01

% 1,0
. . . . . . . . . . dj = o

n

g

z
o

.5
<

3
Gi

.00..,., ,,, . . . . . .

: :

::
;

:
: .

;:; ;:
------ -*--

: ::
I
1
t ;

I
:

I I I I
5,0 5,5 6.0 6.5

t, ns

Fig. 8. Output signals versus time for the symmetric and asym-
metric lines inserted in the circuit of Fig. 6 (a).

As numerical examples let e,= 3.43 E,, e,= 1.90 ~o, W= 0.25

in, dl=O.01 in, dk=d,=o.oos in, d~=O.015 in, and consider the

three cases dj= 0.015 in (symmetric line), 0.010 in, and 0.0 in.

All the pertinent parameters have been computed for these

cases and some of them are summarized in Table 1.

As an example of mode conversion at an improper term-

ination, consider the circuit shown in Fig. 6(a); it is termin-

ated in a short circuit from conductor 1 to ground. Appropri-

ate equivalent circuits are shown in Figs. 6(b), and 7(a) and

(b). (As shown, they are valid only for two transit times, i.e.,

until reflected waves reach the end z = O.) The unit step input

produces a 1-V signal propagating to the right on both con-

ductors. For the symmetric line, this is a pure common-mode

signal. However, in the asymmetric lines, both modes are

excited so that parts of the signals arrive at the termination at

different times. The resulting differential signals between

conductors 2 and 1 at the termination are shown in Fig. 8.

Note that the difference in transit time results in an over-

shoot of the signals with respect to their long-time values.

X. CONCLUDING REMARKS

A matrix analysis of lossless multiconductor transmission

lines with inhomogeneous dielectrics has been given, The

equivalent circuit for such a line has been derived from the

analysis. The general theory provides a convenient method for
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investigating the characteristics of the propagation modes

and the impedance properties of the lines. Straightforward

techniques for solving problems have been given and some

examples have been worked out for the important case of the

three-conductor line,

It should be possible to extend the analysis given here to

the case of low-loss lines, where exponential attenuation of

the propagating modes will arise, along with continuous con-

version of energy from one mode to another. This will be the

subject of further investigation.
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Excess Losses in I_I-Plane Loaded Waveguides

FRED E. GARDIOL AND OLIVIER PARRIAUX

Absfract—The attenuation in a waveguide partially filled with
absorbing material can become larger than that of the same wave-
guide completely filled with that same material. Theoretical and ex-
perimental results are presented together with field distributions
showing that this excess loss is due to a large concentration of electric
field within the 10SSYdielectric in the partially filled configuration.

1. INTRODUCTION

I

N A RECENT publication, Bui and Gagn6 [I] deter-

mined the attenuation in waveguides containing H-plane

slabs of a lossy dielectric, utilizing a perturbation of the

lossless dielectric solution. A most interesting feature of the

results presented is that, in several configurations involving

high-permittivity dielectrics, larger losses were found in

partially loaded waveguides than in completely filled ones.

Rather surprised by this unexpected result, the authors sug-

gest that it might be attributed to the approximate nature of

the technique used. If true, this would mean that the method

and the results presented in [1] are not reliable.

The present study shows that, surprising as they may

seem at first, the results obtained in [1] correspond to actual
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fact and that the attenuation is not necessarily a monotonic

function of the filling factor. The “excess” attenuation is

caused by the presence of a large concentration of the electric

field within the dielectric for the partially loaded waveguide.

A similar nonmonotonic behavior appears in results previ-

ously published by Arnold and Rosenbaum [2].

II. THEORETICAL RESULTS

Since a number of publications have already dealt in some

detail with this type of structure [3 ]– [5 ], there is no need to

repeat the basic theory here. The complex transcendental

equation obtained for lossy-dielectric loading can be solved

exactly by means of available computer programs [6]. Cal-

culations were made for the longitudinal section magnetic

LSMII mode in a waveguide containing a Iossy slab next to the

broad wall (Fig. 1). Results for the attenuation and phase

shift are presented in Figs. 2 and 3 as a function of slab thick-

ness for different conductivities. For conductivities u much

smaller than WE, the attenuation curves increase exponentially

at first then pass through a maximum in the vicinity of

t/a = 0.24 (for this particular configuration), and finally taper

down to the value for the completely filled guide.

For large conductivities [Fig. 2(b)], the attenuation curves

behave differently. The attenuation increases sharply for thin

slabs (as in the previous case), but the peak of the curve is


